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Abstract—This paper presents a hybr id algor ithm by integrat-
ing par ticleswarm optimization techniquewith stochastic ranking
for solving standard constrained benchmark functions defined in
CEC 2006. The problem independent character istics of stochastic
ranking and faster convergence of par ticle swarm optimization
technique are used in the proposed hybr id stochastic ranking
par ticle swarm optimization (SRPSO) algor ithm. Per formance
compar ison of SRPSO algor ithm with five other state-of-the ar t
techniques shows the effectiveness of the proposed hybr id algo-
r ithm. Per formance compar ison is based on quality of solution
and robustness.

I . INTRODUCTION

Most of the real world science and engineering optimization
problems are complex and nonlinear. They have number of
linear and/or nonlinear constraintsembedded in it. Theconven-
tional optimization methods tend to trap in local minima while
solving complex non-linear functions and thus could not solve
such problemswith desired accuracy level. During the last few
decades, Swarm Intelligence (SI) and Evolutionary Algorithms
(EA) have emerged as an alternative for such complex science
and engineering design problems.
Constraint-handling techniques are mainly based on three dif-
ferent methods i.e.,repair method, tournament selection method
and penalty method [1], [2]. The major challenge for EA and
SI in Constrained Optimization Problems (COP) is to handle
constraints efficiently. The penalty function is a most common
approach for handling constraints. Though it is simple, the
main issue is the selection of penalty factor. The optimum
value of penalty factor maintains the proper balance between
objective function and penalty function. As penalty factor
is mostly problem-dependent [3], it is difficult to decide
the optimum value apriori. Stochastic ranking technique has
been proposed [4] to maintain the required balance between
objective function and penalty function. This technique uses
stochastic bubble-sort algorithm to rank the individuals for
generating offsprings for the next generation.
In the literature, many techniques have been proposed to
solve CEC 2006 benchmark functions [5], [6], [7], [8], [9].
Amirjanov et al., proposed a changing range genetic algorithm
(CRGA) in which the size of the search space of feasible
region adaptively shifts and shrinks by employing feasible

and infeasible solutions in the population to reach the global
optimum. [5]. This algorithm has many control parametersand
efficiency of thismethod mainly dependson proper selection of
these parameters. Tessema et al. proposed a SAPF technique
using genetic algorithm for solving constrained optimization
problems. It uses self adaptive penalty function which encour-
ages infeasible individuals with low objective function value
and low constraint violation [6]. Huang et al., proposed co-
evolutionary differential evolution (CDE) technique to solve
the constrained problems. In this technique, a special penalty
function is designed to handle the constraints and then a co-
evolution model is presented and differential evolution (DE)
is employed to perform evolutionary search in spaces of both
solutions and penalty factors [7]. Krohling et al., proposed
coevolutionary particle swarm optimization with Gaussian
distribution (CPSO-GD) to solve constrained optimization
problems formulated as min-max problems. Montes et al.,
presents a simple multimembered evolution strategy (SMES)
to solve global nonlinear optimization problems. Instead of
using penalty functions, it uses a simple diversity mechanism
to allow infeasible solutions to remain in the population [9].
Particle Swarm Optimization (PSO) is a population-based SI
technique that simulates the social behavior of a group of
simple individuals i.e. bird flock or fish school [10]. Based on
thecollectiveintelligence, theswarm adjusts itsflying direction
and search for a global optimum. PSO has shown a good
performance in solving nonlinear unconstrained optimization
problems [11], [12]. However the basic PSO, like other evo-
lutionary algorithms, lacks an explicit mechanism to handle
constraints which are often found in science and engineering
optimization problems. In order to solve complex constrained
problems, thispaper proposesahybrid algorithm by integrating
stochastic ranking with PSO [4] technique, and hence named
as stochastic ranking PSO (SRPSO).
This paper is organized as follows. Section II defines con-
strained optimization problem. Section III presents thestochas-
tic ranking. Section IV describes the proposed stochastic rank-
ing particleswarm optimization (SRPSO) technique. Section V
reports its performance for 15 benchmark functionsalong with
results and discussions followed by conclusions in Section 6.
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I I . CONSTRAINED OPTIMIZATION

Constrained Optimization Problems(COP) are theproblems
to minimize or maximize the object function under certain
given constraints such as inequality, equality, upper bound and
lower bound. This can be formulated as

Minimize f(−→x ),−→x = (x1, x2, . . . , xD) ∈ S

subject to : gi(−→x ) ≤ 0, i = 1, 2, . . . , q (1)

hi(−→x ) = 0, i = q + 1, q + 2, . . . ,m

li ≤ xi ≤ ui, i = 1, 2, . . . , D

Wheref is the objective function, gi, and hi are the number of
inequality and equality constraints respectively. The values li
and ui for 1 ≤ i ≤ D are the lower and upper boundsdefining
the search space S.

I I I . STOCHASTIC RANKING PARTICLE SWARM

OPTIMIZATION (SRPSO) FOR CONSTRAINED

OPTIMIZATION

A. Stochastic Ranking

The most widely used constrained handling method is
the penalty function method. The constrained optimization
problem of equation (1) can be transformed into unconstrained
optimization problem with the introduction of penalty factor as

ψ(x) = f(x) + rkφ(gi(x); i = 1, 2, . . . ,m) (2)

where φ ≥ 0 is a real valued function that imposes a penalty.
The penalty on each constraint is imposed by the penalty
factor rk. Although the above penalty method works well for
certain constrained optimization problems, but selecting the
penalty factor rk remains to be a challenge. If the penalty
factor is chosen to be too small, an infeasible solution may
not be penalized enough (underpenalization), resulting a final
infeasible solution. If the penalty factor is too large, a feasible
solution is very likely to be found (overpenalization), but
could be of very poor quality. Thus underpenalization and
overpenalization are not good for in handling constraints. To
solve the problem of underpenalization and overpenalization
the stochastic ranking technique has been proposed [4].

The stochastic ranking technique uses a simple bubble-sort
algorithm to rank the individuals for producing offsprings in
the next generation. In stochastic ranking, a probability Pf

is introduced to rank individuals. Pf is used to compare the
objective function in infeasible regions of the search space.
Generally two adjacent individuals are used for comparison. If
both are in feasible space, the individual with smaller objective
values will be of higher rank. If both adjacent individuals are
in infeasible space, Pf is used to compare the two individuals.
The individual with smaller objective value will occupy the
rank by the probability Pf . If one particle is in feasible space
and the other one is in infeasible space, then the particle
in feasible space awarded with higher rank. Similarly all
individuals are ranked by comparing adjacent individuals.

B. Particle Swarm Optimization

PSO is one of the popular SI technique being used for opti-
mization [10]. It utilizes the searching capability of the swarm
that arises from the interaction of the simple individuals [10].
Each individual (particle) in the swarm represents a potential
solution. Every particle remembers its current position and the
best position found so far called personal best (pbest). The best
solution among the whole swarm is called global best (gbest).
The location of this particle is communicated to all particles
and hence the flying trajectory of the particles is recalculated
based on the swarm’s gbest t and its own pbest value as

V = V + c1 ∗ ε1 ∗ (pbest−X) + c2 ∗ ε2 ∗ (gbest−X)

X = X + V

where X and V are position and velocity, c1 and c2
are cognitive and social component respectively. εi are
independent random variables uniformly distributed in the
range [0, 1].

C. Stochastic Ranking Particle Swarm Optimizationtic Rank-
ing: SRPSO

Many studies have been done for solving constrained op-
timization problems using EA [2], [3], [4], [13], [14], [15]
and PSO [16], [17]. However, still remains a challenge to
devise more efficient and effective techniques for handling
constraints. PSO shows better performance on unconstrained
optimization problems and popular for its fast convergence
[11], [12]. However, PSO neither explicitly nor implicitly has
the mechanism to handle constraints. Due to its faster conver-
gence and effectiveness of stochastic ranking for constrained
handling. SRPSO is proposed in this paper as an integration
of both stochastic ranking and PSO for solving constrained
optimization problems. The detail implementation steps of
proposed SRPSO algorithm is explained in Algorithm 1. In
the algorithm rand1 and rand2 are random numbers with
gaussian distribution in the range [0,1]. The population of
size NP are initialized randomly in the search range. The
objective function f(x) and penalty function φ(g(x)) of all
NP particles are evaluated. Based on constraint violations,
particles are categorized as feasible and infeasible, and are
ranked using a simple bubble-sort algorithm. The balance
between underpenalization and overpenalization is achieved
by setting the probability Pf less than 1

2
[4]. The Pf is

used to compare particles in infeasible regions of the search
space. Every two adjacent particles are used for comparison,
if both are in feasible space, the individual with smaller
objective values will be considered as higher rank. If both
the adjacent particles are in infeasible space, particle having
smaller objective value assumes higher rank with probability
Pf . If one particle is in feasible space and the other one is
in infeasible space, then the particle in feasible space awarded
with higher rank. This process is repeated until all particles are
ranked. The highest ranked particle will be global best gbest
for the current iteration and is compared with previous gbest,
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Algor ithm 1 SRPSO
Initialization
Initialize the swarm of size NP:
Initialize position ′X ′ and velocity ′V ′ in D -dimensional
search range (Xmax, Xmin).
Initialize c1 = 1.479, c2 = 1.479.
Evaluate the fitness of all particles (NP).
Set the current position as pbest of each particle and best
pbest value as gbest.
Optimize
for t← 1, Maxgen do
Update velocity and position of each particle as

V t+1

i,d = V t
i,d + c1 ∗ rand1 ∗ (pbestti,d −X

t
i,d)

+ c2 ∗ rand2 ∗ (gbesttd −X
t
i,d) (3)

Xt+1

i,d = Xt
i,d + V t+1

i,d (4)

Rank the individuals according to Stochastic Ranking.
Select the highest ranked µ particles.
Generate NP particles from µ individuals.
Evaluate fitness of each particle.
Update pbest: If current fitness dominates the previous then
set current position as pbest else retain previous pbest.
Update gbest: If best of all current pbest dominates the
previous gbest then set current best pbest as gbest else
retain previous gbest.
end for t

continue optimizing until stopping criteria or exceeding
maximum iteration
Repor t results
Terminate

and the one with minimum objective is considered as gbest for
next generation. The personal best pbest of the particles are
also decided based on the acquired rank. The highest ranked
µ individuals out of NP are selected for the next generation
(µ is set as NP

7
). In the next generation rest of the particles

are regenerated (cloned) from highest-ranked µ particles. The
learning rate and mean step sizes are set as in [4] and in our
experiment Pf is set to 0.45.

IV. SIMULATION

The simulations are carried out using a standard PC with
specifications of Pentium Core2Duo, 2GHz with 2GB RAM.
Algorithm is coded in Matlab 7.2 in Windows-XP platform.
The SRPSO with population size of 100 is executed for 30
independent runs on each function. We have set c1, c2 to be
1.479 and Pf = 0.45. The performance of proposed SRPSO
algorithm is evaluated on 15 constrained benchmark functions
chosen from CEC 2006 [18]. The chosen test problems are
characterized by different difficulty levels in linear, nonlin-
ear, quadratic, different-dimensionality and with different con-
straints.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents results and discussions obtained
by SRPSO on fifteen benchmark functions. The discussion
is extended with the comparison of SRPSO to the current
state-of-the-art techniques [5], [6], [7], [8], [9]. The complete
statistical results obtained by proposed SRPSO on 15 standard
benchmark function are tabulated in Table I. The first two
columns of Table I show the constrained functions and their
corresponding optima. This table summarizes the best, worst,
median and mean results over 30 independent runs. The
robustness of the algorithm is tested with standard deviation
which is also tabulated in Table I along with Feasible Rate
(FR). The FR denotes the percentage of the solutions which
are in the feasible space. The number of violated constraints
at the median solution is represented as c in Table I where the
sequence of three numbers indicate the number of violations
(including inequality and equalities) by more than 1.0, more
than 0.01 and more than 0.0001 respectively. The mean
value of violations of all constraints at the median solution is
represented as v in Table I. It can be concluded from Table
I that the proposed SRPSO algorithm consistently found
global optima for all benchmark functions except g07 and
g10 functions. SRPSO also seems to be a robust technique for
constrained optimization problems as the standard deviation
of solutions obtained in multiple runs is very low except
g05, g06 and g10. SRPSO is compared against five recent
approaches; CRGA[5], SAPF[6], CDE[7], CPSO-GD[8] and
SMES[9].

Best result compar ison: Table II shows the best result
obtained by SRPSO for all theconsidered benchmark functions
along with other technique. SRPSO gives comparatively good
results on almost all the benchmark functions except g03.
Worst result compar ison: The worst results obtained by
SRPSO and other techniquesare tabulated in Table III. SRPSO
shows comparatively good results for g01, g05, g07, g08, g12,
g15, g16, g24 benchmark functions on worst results.
Mean result compar ison: Table IV shows the mean result
obtained by SRPSO along with other techniques. SRPSO
shows comparatively good results on most of the benchmark
functions except g03, g04, g06, g09, and g10.

As shown in Tables II-IV, the proposed SRPSO method
gives better result as compared to CRGA, SAPF, CDE, CPSO-
GD, SMES in terms of the quality of solution and robustness
asameasureof best and standard deviation valuesrespectively.

VI . CONCLUSIONS

In this paper, we have proposed a new Stochastic Ranking
based Particle Swarm Optimization algorithm (SRPSO)for
constrained optimization problems. The stochastic ranking
is used to strike a balance between underpenalization and
overpenalization for penalty factor. The performance of pro-
posed algorithm is evaluated for fifteen different constrained
benchmark functionschosen from CEC 2006. Thecomparative
result concludes that SRPSO is an efficient approach to solve
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TABLE I
OPTIMUM RESULTS, STANDARD DEVIATION, NUMBER AND MEAN VALUE OF THE CONSTRAINED VIOLATIONS AT THE MEDIAN SOLUTION OBTAINED BY

SRPSO

Func optimum best median worst c v mean std FR
g01 -15 -15.00 -15.00 -15.00 0,0,0 0 -15.00 5.27e-12 100
g02 -0.8036191 -0.8034681 -0.7933138 -0.7572932 0,1,1 0.16 -0.7886154 1.31e-3 100
g03 -1.0005001 -0.9996365 -0.9986063 -0.9965328 0,0,0 0 -0.9984904 8.18e-5 100
g04 -30665.539 -30665.539 -30665.539 -30665.364 0,0,0 0 -30665.526 4.05e-3 100
g05 5126.4967 5126.4985 5127.6362 5145.9263 0,0,0 0 5129.9011 5.11 100
g06 -6961.8139 -6961.81397 -6961.8139 -6323.3140 0,0,0 0 -6916.1371 138.331 100
g07 24.306209 24.312803 24.360653 24.885038 0,1,1 0 24.38 1.13e-2 100
g08 -0.0958250 -0.0958250 -0.0958250 -0.0958250 0,0,0 0 -0.0958250 2.80e-11 100
g09 680.63006 680.63043 680.65104 680.76645 0,0,0 0 680.66052 3.33e-3 100
g10 7049.248 7076.397 7262.878 8075.923 1,2,2 522 7340.69640 255.37 100
g11 0.75 0.75 0.75 0.75 0,1,1 0 0.75 9.44e-5 100
g12 -1 -1 -1 -1 0,0,0 0 -1 2.62e-11 100
g15 961.71502 961.71517 961.71710 961.77126 0,0,0 0 961.72076 1.12e-2 100
g16 -1.9051553 -1.9051553 -1.9051553 -1.9051553 0,0,0 0 -1.9051553 1.12e-11 100
g24 -5.5080133 -5.5080133 -5.5080133 -5.5080133 0,0,0 0 -5.5080133 2.69e-11 100

TABLE II
COMPARISON OF BEST RESULTS OF SRPSO WITH OTHER STATE-OF-THE-ART TECHNIQUES

Func SRPSO CRGA[5] SAPF[6] CDE[7] CPSO-GD[8] SMES[9]
g01 -15.00 -14.9977 -15.00 -15.00 -15.00 -15.00
g02 -0.80346805 -0.802959 -0.803202 -0.794669 NA -0.803601
g03 -0.9997 -0.9997 -1.000 NA NA -1.000
g04 -30665.539 -30665.520 -30665.401 -30665.539 -30665.539 -30665.539
g05 5126.4985 NA NA NA NA NA
g06 -6961.8139 -6956.251 -6961.046 -6961.814 NA -6961.814
g07 24.312803 24.882 24.838 NA 24.711 24.327
g08 -0.095825041 -0.095825 -0.095825 NA NA -0.095825
g09 680.63004 680.726 680.773 680.771 680.678 680.632
g10 7076.397 7114.743 7069.981 NA 7055.6 7051.903
g11 0.75 0.750 0.749 NA NA 0.75
g12 -1 -1.000000 -1.000000 -1.000000 NA -1.000
g15 961.7151 NA NA NA NA NA
g16 -1.9051553 NA NA NA NA NA
g24 -5.5080133 NA NA NA NA NA

TABLE III
COMPARISON OF WORST RESULTS OF SRPSO WITH OTHER STATE-OF-THE-ART

Func SRPSO CRGA[5] SAPF[6] CDE[7] CPSO-GD[8] SMES[9]
g01 -15.000000 -14.9467 -13.097 -15.0000 -14.994 -15.000
g02 -0.757293 -0.722109 -0.745712 -0.779837 NA -0.751322
g03 -0.9965328 -0.9931 -0.887 NA NA -1.000
g04 -30665.3644038 -30660.313 -30656.471 -30665.509 NA -30665.539
g05 5145.9262874086544 NA NA NA NA NA
g06 -6323.3140341 -6077.123 -6943.304 -6901.285 NA -6952.482
g07 24.885038 27.381 33.095 NA 27.166 24.843
g08 -0.095825041 -0.095808 -0.092697 NA NA -0.095825
g09 680.76645813 682.965 682.081 685.144 681.371 680.719
g10 8075.923755 10826.09 7489.406 NA 11458 7638.366
g11 0.750364 0.757 0.757 NA NA 0.75
g12 -1.000000 -1.000000 -0.999548 -1.000000 NA -1.000
g15 961.77126304593492 NA NA NA NA NA
g16 -1.9051552584358129 NA NA NA NA
g24 -5.508013271495793 NA NA NA NA NA
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TABLE IV
COMPARISON OF MEAN RESULTS OF SRPSO WITH OTHER STATE-OF-THE-ART

Func SRPSO CRGA[5] SAPF[6] CDE[7] CPSO-GD[8] SMES[9]
g01 -15.000000 -14.9850 -14.552 -15.0000 -14.997 -15.000
g02 -0.788615 -0.764494 -0.755798 -0.785480 NA -0.785238
g03 -0.9985 -0.9972 -0.964 NA NA -1.000
g04 -30665.526026 -30664.398 -30665.922 -30665.536 NA -30665.539
g05 5129.9010819813429 NA NA NA NA NA
g06 -6916.1370274885467 -6740.288 -6953.061 -6960.603 NA -6961.284
g07 24.38 25.746 27.328 NA 25.709 24.475
g08 -0.095825041366072852 -0.095819 -0.095635 NA NA -0.095825
g09 680.66052250760072 681.347 681.246 681.503 680.7810 680.643
g10 7340.6964029884484 8785.149 7238.964 NA 8464.2 7253.047
g11 0.75 0.752 0.751 NA NA 0.75
g12 -1.000000 -1.000000 -0.99994 -1.000000 NA -1.000
g15 961.72076523564249 NA NA NA NA NA
g16 -1.9051552584503268 NA NA NA NA NA
g24 -5.508013271537056 NA NA NA NA NA

constrained optimization problems in comparison to other
popular reported techniques. This technique can be used for
solving costrained engineering design problems. In future we
propose to compare the computational complexity of SRPSO
with other techniques to evaluate the convergence rate of the
algorithm.
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