

A personal scheduling system using genetic algorithm
and simple natural langague processing for usability

Quan T.D, Nguyen H.T, Long H.N.G , Luan M.T, Long T.T, Tien M.Q, Tho Q.T

JSKE research group about scheduling and AI

Ho Chi Minh City University of Technology

Abstract1— Scheduling in industry is developing in fast

pace. However, to use those researches in personal scheduling,

the scheduling theory must solve some novel specific problems.

Scheduling task is originally combinatorial complex with many
constraints. In this paper, we introduce about how we apply an

adapti ve genetic algorithm in solving the problem named split-

able scheduling. Beside that, by applying NLP, the scheduling

application is more interactive to end users. Moreover, genetic

algorithm offers, in this scenario, a promising approach to
problem solving, considering have good results. Therefore, the

goal of this work is applying genetic algorithm (GA for short)

with some changes from original redirect representation GA,

which is implemented in industry before, to solve split-able

scheduling problem in personal user perspective.

Keywords—Evolutionary algorithm, genetic algorithm,
Scheduling, Natural langage processing.

III... INTRODUCTION

Scheduling is a process of deciding how to allocate

resources over time to perform a set of tasks in satisfying

certain constraints [13,4,5,16,19,2]. It plays a very important

role in help ing people to make plans to use all their

resources effectively and have optimal results. Because of

that, it is used in many manufacturing and services

industries. Scheduling is also very necessary in personal life,

not only helps individuals in dealing with a numerous

complicated task, but also reduces stress. Good scheduling

skill will help people to create a good vision, manage risk,

and design a good quality life that balance their personal and

their professional work.

In current technology era, people have to deal with
hundreds of tasks, emails, and many opportunities day by

day. According to a productivity expert, most of us always
have about 50 to 150 s mall tasks at any moment of time [1].

Besides that, each task has many attributes and constraints

1
 Main author of this paper is Undergraduate student

as deadline, duration, appropriate time for doing it more

effectively… The situation that individuals cannot handle all
their tasks effectively, and then will break their

commitments with the others and even with themselves, is
the main cause of stressfulness and anxiousness. To be

successful in this world, we need the ability to decide

swiftly what the most important things to do are, and what
task can be eliminated, at any moment.

Current calendar applicat ions such as Google calendar or
Microsoft Office Outlook only provides a visual

environment that helps people manually pick up available
time b locks and arrange their tasks. The problem is that with

so many tasks, constraints to be satisfied and especially

because of the constantly changes in their real life, people
become exhausted when continually rescheduling their tasks

with that ineffective and time-consuming way.
Consequently, people have to be very strict with their plan

and therefore feel uncomfortable, or cannot trust the
schedule and then give up.

Currently, there are many algorithms to solve the
scheduling problems in industry. However, in personal

scheduling, the problem has many different characteristics.

Firstly, personal plan is always changeable. Although
almost their tasks may have a due date or deadline, they do

not have to happen at a fixed time and can be slide depend
on new events of the real world. It makes the personal plan

have to be flexible. Each task can be preempted by a new
task which is more important than. Secondly, individual

may want to break a large task into many small ones, but

each split part of the task cannot last less than a specified
minimum duration. This constraint about the duration of

each part of a split-ab le task does not exist in industrial
scheduling.

To solve that problem, the authors have proposed a new
approach on personal scheduling using genetic algorithm

with some specific heuristic, called split-able scheduling

algorithm.

-23-

MIWAI 2010

In addition, to increase usability, the authors apply some
natural language processing (NLP for short) techniques

when processing input task for the system. Users can enter a
task by typing a natural sentence, e.g.: ―I will read book

about Scheduling in 2h before next Saturday.‖ or ―I will
research about AI about 10 hours next week.‖ . The system

then automatically parses that sentence, recognizes many

properties of each task and passes these values to the
scheduling algorithm. Our approach is implemented as an

effective personal scheduling system known as the JSKE
system.

The rest of this paper is organized in 5 Sections. Section
2 depicts the general architecture of the JSKE system with

some main features. Section 3 illustrates the process of

applying NLP to process task input. Section 4 is the main
content of paper, which presents our proposed approach for

using adaptive algorithm (GA split-ab le scheduling
algorithm) in ‗JSKE‘ system. Section 5 discusses about

current status of our system. Finally, section 6 is the
conclusion of the paper and the direction for our future

research.

IIIIII... GENERAL ARCHITECTURE

JSKE Engine

JSKE Data Service

Windows

Form
Web / Mobile

NLP

Voice/Text

JSKE Algorithm

Constructive

Heuristic

Algorithm

Genetic

Algorithm

Ontology

Processor

Database

NLP request

Save JSKE data

JSKE Client-side

JSKE Server-side

Schedule Request

F

Figure 1 – JSKE Architecture

Figure 1 presents the general architecture of the JSKE

system. We use Passive Model-View-Presenter [20] design

pattern to implements the system based on Microsoft

Technologies. According to Figure 1, the system has two

main parts: one is the Client-side which concentrates on

displaying and handling the user interface; the other is the

Server-side that was built to process complex requests from

Client-side like Scheduling, Natural Language Processing,

etc...

Both Client-side and Server-side can be deployed on a

single PC for an indiv idual user or on a complex server

system for multiple users. The JSKE system can also

interact with third party systems like Google Calendar or

Microsoft Outlook to get user specified data like Calendar,

Task List, etc…

1. JSKE Client-side

The main function that Client-side holds is providing and
handling user interface so that user can access to the system

through Web/Mobile environment or Windows Form
application environment. The JSKE Client-side consists of

three parts.

The first part is the Web/Mobile which provides a user

interface that can be displayed on browsers such as: Firefox,

IE, Chrome, Safari, and Opera… These user interfaces were
customized so that users can access them by using PC,

Laptop or mobile devices (smart phones, mobile phones).

The second part is the Windows Form which provides a

user interface for a standalone application that runs on
Windows operation system.

The last part is the NLP Voice/Text which can be

integrated into Web/Mobile or Windows Form. This NLP
system provides friendly user access control by utilizing

Natural Language Processing. It records all input from user
under the form of plain text or voice, which we will

implement in the future, then send to Ontology Processor.

2. JSKE Server-side

In this section, we exp lain more about the Server-side of
our system. The Server-side consists of three main parts.

The first part, also the main part of the Server-side, is
JSKE Engine. This Engine consists of Constructive

Heuristic Algorithm, Genetic Algorithm and Ontology

Processor which can handle all requests from user. In
addition, it controls data access, authentication,

authorization, privacy preserving for user data and
encryption-decryption in the form of public private key and

symmetric key as well.

- JSKE Algorithm manages all JSKE algorithms for

scheduling purpose. It decides which class es of

algorithm will be used then provides the data input
and output for the algorithm. JSKE Algorithm was

designed to support many algorithms which fit JSKE
standards. This means that third party can develop

their own algorithms then attach them to JSKE.
There are two kinds of algorithm that JSKE

Algorithm supports. One is Constructive Heuristic
Algorithm, which was developed by using heuristic

rules providing user with expected results in NP-

times. The other is Genetic Algorithm, which
optimizes the result from Constructive Heuristic

Algorithm so that user can get a better schedule
result.

- Ontology Processor analyzes user‘s queries which

-24-

MIWAI 2010

are natural language by using Ontology (described in
Section 3.)

The second part is JSKE Data Service, which provides
methods for JSKE Engine to access data, which is stored at a

database. The last part is Database, which stores User Data
and System Configuration.

IIIIIIIII ... ONTOLOGY-BASED NATURAL LANGUAGE

PROCESSING

In order to render users with a convenient

communicat ion environment, our system supports a

mechanis m that allows users to submit tasks to be scheduled

using natural descriptions. To capture the semantics

conveyed in those natural descriptions, we rely on an

ontology-based approach presented in [17]. Basically, this

process consists of the following steps:

- Domain ontology acquisition: A domain ontology

which first needs defining reflects fundamental

concepts and behaviors in the domain of discourse.

Since the knowledge represented by ontology is

machine-understandable, our system can make full

use of the ontology to analyze the meaning of a

simple natural phrase.

- Ontological concepts and instances recognition : In

this step, the system recognizes ontological concepts

and instances, based on what are well-defined in the

ontology.

- Ontological relations reconstruction: From the

recognized concepts and instances, the

corresponding relations between them are

reconstructed. This step also involves some

techniques for inconsistency resolution.

- Conceptual graph generation: This final step

generates a conceptual graph, which is a high-level

knowledge representation, for fu rther processing.

PriorityDuration Deadline

Task

Time

Last-for
Finish-on-

or-before

Has-priority Begin-at

Precede-by

Figure 2 – A simple ontology

Let us demonstrate on how this technique works by the

following example. In Figure 2, a simple ontology is given

(the full ontology used on our research is presented in

Appendix A). Suppose that the user submit the scheduled

task in natural language as follows.

(T1): ―Meeting of research group by 3pm tomorrow –

urgent‖

Processed by the system, the mentions of meeting, 3pm

tomorrow and urgent are respectively recognized as

instances of concepts Task , Time and Priority. Then, the

ontological relat ions are extracted accordingly and the final

conceptual graph is constructed as given in Figure 3.

Priority:

High

Task:

Meeting

Time: 3pm

11 Oct

2010

Has-

priority
begin-at

Figure 3 - A conceptual graph generated

Obviously, the generated conceptual graph provides

structured and well-defined information for the subsequent

task of scheduling. In case some significant informat ion is

missing, the system will query the user for further

instructions or use default value.

Supposed that the user later gives another scheduled task

as follows:

(T2): ―After the meeting, find suitable time for reading

course material in about 1 hour‖.

Similarly, as the way the system processes task (T1), we

have another conceptual graph generated as illustrated in

Figure 3. In this time, the system will then realize that there

is no specific t ime g iven and it needs to schedule suitable

period for this task.

Task:

Meeting

Task:

Reading

Time: ?
Preceded-

by begin-at

Figure 3. Another conceptual graph

III VVV... ADAPTIVE SPLIT -ABLE SCHEDULING ALGORITHM

In this paper, we consider the scheduling problem where

a set of n split-able tasks T={T1, . . . , Tn} has to be

scheduled without preemption on a single machine. There is

another set of fixed tasks that has constant start time and end
time FT = {FT1, FT2, ..., FTm}. In manufacturing scheduling

literature, these fixed tasks could be considered as non-
available time windows (noatw for short). This constraint

represents maintaining phase in which the tasks could not be
executed.

Each task Ti is described by processing time pi, release

date ri, due date di, weight wi, and the smallest time duration
of a split minspliti. We denote by precedi the set of tasks

which must be completed before beginning of task Ti. Let Ci

-25-

MIWAI 2010

be the completion time of Ti; splitij be the j-th split of task Ti.

The decision of schedule should define a task Ti

according to one of two following situations:

- earliness if the task completes before its due

date (Ci di),

- tardiness if the task completes after its due date

(Ci > di).

The purpose of personal scheduling is not making strict
disciplinary to user, but helping users analyze how they are

dealing with life tasks and their productivity in completing
them. One of the obvious criteria for measuring these things

is the number of tardiness tasks in their schedule described
by using the following notion:

The approach with this objective function aims to
minimize number of important tardiness tasks as much as

possible.

According to the classical three-field scheduling
notations [7], the studied problem is noted as 1 | ri, di,, prec,

noatw, minspliti | wiUi.

According to Karp, the scheduling problem 1 | | wiUi

is NP-Hard [12]. Without noatw constraint and ri=0 for all
tasks Ti , a splitting task schedule for a one machine prob lem

with monotone objective function can be polynomial ly
transformed into a nonsplit-able task schedule without

increasing the objective function. This implies that 1 |
minspliti | wiUi is NP-hard as well. Consequently, the

considering scheduling problem is also NP-Hard.

Let see an example about the difficulty in solving our

problem

 Input of task T1:

p1 = 6, minsplit1 = 2, r1 = 0, d1 = 12,

preced1 = , w1 = 1.

 Input of task T2:

p2 = 4, minsplit2 = 2, r2 = 0, d2 = 14,

preced2 = , w2 = 1.

The time axis is represented in Figure 4 (the hatched part

is employed by a fixed task, which starts at time t=5 and

ends at time t=9).

Figure 4 – Fixed task constraint

Two tasks T1 and T2 could be scheduled as follows

(demonstrated in Figure 5):

- Processing order: T1 first and then T2,

- T1 is divided into two splits: split11 = 4, split12 = 2,

then C1 = 11, U1 = 0,

- T2 has only one split: split21 = p2 = 4, then C2 = 15,

U2 = 1.

The objective function is then equal to 1.

Figure 5 – Case of T1 << T2

With respect of execution task order (all splits respect
this order, e.g. if T1 << T2 then all splits of T1 are process

before all splits of T2), T2 also executed before beginning to

process task T1. The result is as follows.

- Processing order: T2 first and then T1,

- T2 has one split which starts at time t=0, and
fin ishes at time t=4, then U2 = 0,

- T1 also has one split which starts at time t=9, and
fin ishes at time t=15, then U1 =1.

The objective function is then equal to 1.

Figure 6 – Case of T2 << T1

However, the optimal solution of this instance could be
defined by split both of tasks. The sequence of splits in

optimal solution is (split11, split21, split12, split22) with split11
= 60, split12 = 50, split21 = 15, split22 = 25. Then, C1 = d1 =

12 and C2 = d2 = 14. The objective function is consequently,

equal to zero. The execution sequence is presented as in
Figure 7.

Figure 7 – Optimal solution

By studying the above example, finding a precise

algorithm for our problem is not feasible. In this paper, we

propose an adaptive genetic algorithm (GA) to solve the

problem. This GA algorithm could be cooperated with a

constructive heuristic. The constructive heuristic and GA

algorithm will be described as follows.

AAA... Constructive heuristic

For solving the considering scheduling problem, we
propose firstly an algorithm called ―Constructive heuristic
method‖. We call this “Constructive heuristic” because the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

split11 split12 split21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

split21 split11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

split11 split12 split22 split21

-26-

MIWAI 2010

solving problem is completely NP-hard, therefore in the
present, it‘s difficult to find a mathemat ical dominant rule

for this heuristic. Consequently, the following heuristic
only depends on some reasonable rules of human thinking

for this problem.

We define a pair [si, ei] is annotated for a time block

between two consecutive fixed tasks. Initially, set A is a set

of these time b locks A = {[s1, e1], [s2, e2] , ... [sn, em]}.

We defined a function named tryFill(task). This function

tries to fit a task into time blocks as much as possible.
Notice that if we try to fill a t ime b lock by a split of the task,

we must consider whether the remaining of the task satisfies
the minimum split constraint. If not, we must resize the split

in order the remaining of the task satisfies the minimum

split constraint. Let us see these following examples:

Task, block [0, 7] [8, 11] [14, 19] Note

P1 = 11,

minsplit1 =
3

Split1 =

[0, 7]

Dur1 = 7

Split2

doesn‘t
fit in this

block

Split2 =

[14,18]

Dur2 = 4

Correct

P2 = 10,

minsplit2 =
3

Split1 =

[0,7]

Dur1 = 7

Split2 =

[8, 11]

Dur2 = 3

 Correct

P3 = 8,

minsplit3 =
3

Split1 =

[0, 7]

Dur1 = 7

Split2 =

[8, 9]

Dur2 = 1

 Vio late
2

P3 = 8,
minsplit3 =

3

Split1 =
[0, 5]

Dur1 = 5

Split2 =
[8, 11]

Dur2 = 3

 correct

Let timeWalker be a variable that indicate a specific

point of time. Set B is a set of candidate tasks could process

at timeWalker.

We define function getCandidateTask(time) be a

function which returns all candidate tasks at a time point.
Set C is a set which includes all scheduled tasks. The

heuristic algorithm is implemented as follow:

- Step 1: create set A include all time blocks.

timeWalker = 0. Set .

- Step 2: accord ing to the task set T, we use tryFill

function to find tasks that surely is late, denote set T’ and

delete from T.

- Step 3: set B = getCandidateTask(timeWalker) from

task set T.

- Step 4: choose from set B a task Ti which has a

minimum value of () among the tasks of B, i.e.

2
 Because minsplit3 = 3 but dur2 = 1

With Fi is the ratio of a task splits filling its all time

blocks. Easy to see that max value o f Fi is 1. More precisely,
let task Ti filled some blocks in set A and start time of the

first block is timeWalker: [timeWalker, e[h]] ; [s[h+1] , e[h+1]] ;
... ; [s[h+a], e[h+a]] (a is the number of block, which has

duration smaller than minspliti).Therefore, task Ti is divided
into (k-h + 1) splits which have corresponding durations:

dur1 , dur2 , ..., durk-h+1. They are calculated by tryFill

function (see the table above for more details). We have:

If Fi is small, it means that task Ti can easily find some

blocks to fit in. So task Ti should be filled after other tasks,

for example task Tj, whose Fj is larger.

- Step 5: put task Ti into set C and delete from set T,

update timeWalker be the end of the last split of task Ti.

Update set A = { [timeWalker, e[k+a]] , [s [k+a+1] , e[k+a+1]], ...,

[sn, en] }. Go back to step 3 if there exists any

unscheduled task in set T.
By using this heuristic algorithm, we could create a good

initial population for the genetic algorithm which will be
introduced as follows.

BBB... Genetic algorithm

 The GA was first introduced by [11]. It is an adaptive

search algorithm, which encompass semi-random search
method whose mechanism based on the evolution process in

nature. In contrast to other search algorithms, GA works in a

population, not only with an individual. Each indiv idual in
GA is assigned a fitness value, which is objective function

value in scheduling problems. A reproduction step is used
for producing a next generation population which has better

fitness values than old population. In this step, GA applies
cross over and mutation method on current population.

However, beside some advantages of GA, we must analyze

carefully all specific properties of solving problem and
decide on a proper presentation, an objective function,

genetic operators, genetic parameter and good initial
population to improve the quality of searching process. A

survey of [8] summarizes more about some techniques in
GA. In addit ion, the original GA uses binary values to

represent a chromosome. However, in some scheduling

problems, GA with real values has been proven out
performance than binary GA [9]. The following sub-sections

describes how we apply GA into our problem.

1. Overview:

The process of applying GA has following main steps:

 Step 1: Generate first population. In this step, GA

-27-

MIWAI 2010

cooperates with the constructive heuristic we
mentioned before to get a good in itial population as

near the optimum as possible.

 Step 2: Loop until the terminated condition is true

o Choose chromosomes to mate.

o Mate chromosomes by crossover operator.

o Mutate some random chromosomes to avoid

premature convergence.

The process is clearly illustrated by below picture:

Figure 8 – GA process overview

Next, we will explain more details about some important
processes in our GA.

2. Representation, decode function and fitness

function:

Each individual in GA is represented as a chromosome.

The performance of GA algorithm depends much on how
we represent a schedule result. There are many ways for

mapping a schedule to a chromosome, e.g. operation-based
representation, task-based representation, preference list-

based representation, task pair relation-based

representation, priority rule-based representation,
disjunctive graph-based representation, completion time-

based representation, machine-based representation, which
are provided in in-depth survey of Cheng et al.[6].

In this paper, we propose to use Random keys (RK)
representation [3] with some minor changes for being more

appropriate to the current problem. The advantages when

using RK is analyzed more in [15]. We define numOfSplitj
is the maximum number o f splits each task could be split.

However, in a schedule result, it‘s obvious that a task does

not always has numOfSplitj splits.

Each element in a chromosome represents a priority of a

corresponding task split. This priority definition has two
impacts on the position and processing time of the

corresponding split. Firstly, it represents the factor of split
duration compared with other splits of the same task. More

clearly, the higher priority a split has, the longer that split

last. Secondly, priority also shows the importance of that
split compared with other splits, which are feasible fo r the

current scheduled time, from other tasks. That means in the
decoding process the split which has the highest priority

will be chosen to put as the next split in the result schedule.

Firstly, we implement an algorithm (1) for calculating

the processing time of each task split :

 Pj is the set of possible task j’s split priority which
are extracted from a chromosome. avgj is the

average value of all elements in set Pj .

 Let Sj is the array which will include the duration of

task j’s splits in the result schedule.

 Set sumPriority = Sum of elemenets in set Pj

 For each s plit priority s pk in Pj

 If s pk > avgj then add value:

(spk / sumPriority * pj) to Sj

However, we can see a flaw in the algorithm above as

there aren‘t cases that a task j has numOfSplitj in the

decoded schedule result because there‘s always at least one
spk that is less than avgj. To overcome this, for each task, we

add another priority element,which is called fake priority, to
the chromosome therefore any task could have the

maximum number o f splits in a decoded schedule result.
Now we implement the main decode function:

 Step 1: For each task j , we use algorithm (1) to

decode from the chromosome to Sj.

 Step 2: For all feasible s plit at the current time

which are the first element of all Sk , choose the split
with the highest priori ty and set as the next s plit.

 Sterp 3: if there are still some tasks that aren’t
decoded, go back to step 2.

A feasible task split at a time point is a split that can be
processed at that time. We will go through with an example:

Task a: pa = 7 , minsplit = 2, ra = 0 (we don‘t need

duedate in the decoding process)

Task b: pb = 4 , minsplit = 2, rb = 2

Task c: pc = 9, minsplit = 3, rc = 0, preced = {a}

The decoding chromosome is:

0.7 0.1 0.3 0.1 | 0.4 0.2 0.1 | 0.5 0.4 0.6 0.3

By applying the algorithm (1) we have:

Sa = [2 , 5] ; Pa = {0.7 , 0.3}

-28-

MIWAI 2010

Sb = [4] ; Pb = {0.4}

Sc = [4, 5] ; Pc = {0.5 , 0.6}

By applying the decode algorithm we have the schedule
result:

Splita1 (4 time units) - because 0.7 is the current highest

priority

→ splitb1 (4 t ime units) – although splitc1 has the current

highest priority, it is not feasible at the current time because
task a haven‘t finished yet.

→ splita2 (5 t ime un its)

→ splitc1 (4 time units)

→ splitc2 (5 time units).

The final result is:

splita1 → splitb1 → splita2 → splitc1 → splitc2 .

3. Create init ial population:

In original theory of GA, the first population is created
by using a random method. However, with some complex

scheduling problems, other authors usually apply some

heuristic methods for creating initial population. In our
context, we implemented a heuristic algorithm that shows

quite good results.

4. Selection, crossover and mutation:

a. Selection:

In GA, we specify a keep ing rate parameter Xrate, which

is the percent population of a generation, is kept for the next
generation. The chromosomes, which are kept, have highest

fitness values. Choosing a good keeping rate is an

experimental process. If X rate is too high the time for
convergence is long. In contrast, if Xrate is too low, the

numbers of good traits in the next generation is limited. By
changing some value of Xrate, we know that 50% for Xrate is

good enough. After choosing keeping chromosomes, the
main GA process continues with Roulette Wheel Weighting

algorithm for selecting chromosomes, which will run

through a next crossover phase.

b. Crossover

As mentioned above, chromosomes are represented by
real values. Hence, we will use the crossover technique in

[10] instead of crossover method in orig inal b inary GA.

c. Mutation:

Random mutations alter a certain percentage of the bits
in the list of chro mosomes. Mutation is the second way a

GA explores a cost surface. It can introduce traits not in the
original population and keeps the GA from converging too

fast before sampling the entire cost surface. A single point

mutation in original GA changes bit 0 to 1 and vice versa. In
real-value GA, we utilize mutation method in [16] for

chromosomes.

VVV... CURRENT STATUS OF SYSTEM

The standalone JSKE System currently supports the

Constructive Heuristic Algorithm, Genetic Algorithm and

NLP techniques to schedule and input task.

After the completeness of the Window Form JSKE

system, we are currently developing the Web/Mobile JSKE

system on web platform, base on the current JSKE Engine.

This system will concentrate on optimizing the Genetic

Algorithm performance. Besides that, it also pays attention

to NLP techniques , which support voice recognition and

natural query to control the system.

Here are some screenshots of the current JSKE System

that runs on Windows platform. These screenshots are the

most important part of the current JSKE System.

The first screen shot is the one in Figure 9. Th is

describes the way user can input their tasks using NLP

technique. They must first put plain text that describes their

tasks in the ―Provide Task Information‖ text area. After that

they click on ―Send to NLP‖ button in order to send the task

to the NLP Engine. If the plain text is successfully

processed, then we will see a screenshot like Figure 10. In

fact, Figure 10 is just the most important part of the ―Task

Form‖, which is a i that was written for user to input their

task manually.

After entering all tasks by using NLP Form in Figure 9

or Task Form in Figure 10, we can see the screenshot like

Figure 11. This is the main User Interface of JSKE System.

We can use this User Interface to manage our task list,

configure the system, tracking for Diary and task progress

and most of all run the schedule function. The schedule

function will send appropriate data to JSKE Engine to

schedule an expected calendar for user. After the schedule is

completed, user can view the schedule result in the form o f a

calendar in Microsoft Outlook like Figure 12.

-29-

MIWAI 2010

Figure 9 - Input task using NLP

Figure 10 - The most important part of Task Form

-30-

MIWAI 2010

Figure 11 - Main UI of Standalone JSKE System

Figure 12 - The output calendar on Microsoft Outlook 2007

VVVIII... CONCLUSION

By applying scheduling theory in personal scheduling,

JSKE system helps users to organize their task effect ively.

However, scheduling tasks is a boring activity because

without computer aid, users must repeatedly enter their task

informat ion. In future, we will try to apply more AI

technologies such as data min ing, decision support system

into JSKE to improve user's experience and scheduling

results. Moreover, one of the most challenges in personal

scheduling is rescheduling each time user add one more task

as fast as possible but also keep the good quality of the old

schedule. Therefore, another considering research focuses

on rescheduling using an evolutionary algorithm.

-31-

MIWAI 2010

REFERENCES

[1] D. Allen, ―Getting things done, the art of Stress-free
productivity‖, Penguin Group, pp 41, 2003.

[2] K.R. Baker and D. Trietsch, Principle of sequencing and
scheduling, Wiley, 2009.

[3] J.C. Bean, ―Genetics and Random keys for Sequencing and
Optimization‖, Journal of computing, vol. 5, pp. 154-160, 1994.

[4] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Handbook on scheduling : from theory to applications. Springer,
2007.

[5] P. Brucker, Scheduling algorithms, 4th edition, Springer-Verlag,
Berlin, Germany, 2004.

[6] R. Cheng, M. Gen, and Y. Tsujimura, ―A tutorial survey of job-
shop scheduling problems using genetic algorithms—i.
representation,‖ Computers and Industrial Engineering, vol. 30, no. 4,
pp. 983–997, 1996.

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy
Kan. ―Optimization and approximation in deterministic sequencing
and scheduling : a survey‖, Annals of Discrete Mathematics, vol. 5,
pp. 287–326, 1979.

[8] D.E. Goldberg , Genetic algorithms in search, optimization and
machine learnin‖ , Addison Wesley, 1989.

[9] E.Hart , P. Ross and D. Corne, ―Evolutionary scheduling: a
review‖, Genetic Programming and Evolvable Machines, vol. 6, no. 2,
pp. 191-220, 2005.

[10] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithm, Wiley-
Interscience (2

nd
 ed.), 2004.

[11] J.H. Holland, ―Adaption in natural and artificial systems‖,
Technical report , University of Michiga, 1975.

[12] R.M. Karp, ―Reducibility among combinatorial problems‖. In
Complexity of computer computations (Proc. Sympos., IBM Thomas
J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85-103.
Plenum, New York, 1972.

[13] J.Y-T. Leung, Handbook of scheduling : algorithms, models,
and performance analysis. Computer and information science series,
Chapman and Hall/CRC (ed.), Boca Raton, Florida, 2004.

[14] J.M. Moore, ―An n job, one machine sequencing algorithm for
minimizing the number of late jobs‖, Management Science, vol.15
pp.102–109, 1968.

[15] B. Norman and J.C.Bean, ―Random keys genetic algorithm for
scheduling : Unabridged version‖, Internal Report , Department of
Industrial and Operation engineering, University of Michigan, 1995.

[16] M. Pinedo, Scheduling : theory, algorithms, and systems. 2nd
edition, Precentice Hall, Upper Saddle River, New Jork, USA, 2002.

[17] T.T. Quan and S.C. Hui, ―Ontology-based Natural Query
Retrieval using Conceptual Graphs‖, In Proc. of Tenth Pacific Rim
International Conference on Artificial Intelligence (PRICAI 08),
Vietnam, 2008.

[18] L. Schrage, “A Proof of the Optimality of the Shortest
Remaining Processing Time Discipline‖, Operations Research, vol.
16, no. 3, pp. 687-690, 1968.

[19] V. T‘kindt and J-C. Billaut, Multicriteria scheduling : theory,
models and algorithms, Springer (2

nd
 ed.), 2006.

[20] Microsoft : ―Model-View-Presenter Pattern―

 http://msdn.microsoft.com/en-us/library/ff647543.aspx

-32-

MIWAI 2010

http://msdn.microsoft.com/en-us/library/ff647543.aspx

APPENDIX A – THE WORKING ONTOLOGY

Conceptual schema of the working ontology constructed for this research

Task

Name

Task

Priority

Task

Duration

Task

Deadline

ProjectTask

Task

Descripti

on

Belong-to

Task

Status

Project

Descripti

on

Project

Name

System

Configur

ation

Schedule

Order

Calendar

Working

Hour

Schedule

Start

Schedule

End

Working

Hour

Name

Work

Time

Project

Priority

Minimum

Time

Split

Personal

Folder

Path

Appoint

ment

Event

Event

Name

Event

Start

Event

Duration

Event

Priority

Event

Note

Event

Cost

Event

Type

JSKE

Event

Diary

Event

A-Part-Of

A
-P

a
rt

-O
f

A-Part_of

A
-P

a
rt

_
o

f

Schedule-In Consist-Of

Consist-Of

B
e

lo
n

g
-T

o

B
e

lo
n

g
-T

o

H
a

s
-p

ri
o

ri
ty Belong-To

B
e

lo
n

g
-T

o

Belong-to

Start-on

L
a

s
t-

fo
r

Belong-To

Cost

Note-about

Has-Priority

Belong-to

Belong-to
Last-for

In-state-of
Finish-on-

or-before

Start-on

Has-priority

Finish-on

Has-min-split

Precede-by

1

1..*

1..*

1..*

1

1

1

1

1

1

1

1

1..*

1

1

1 1

1

1

1

1

11..*

1

1

1

1

1

1

1

1

Figure 11 – Conceptual schema of the current working ontology

-33-

MIWAI 2010

