

Accelerating Bayesian Computation with

Parallel Reduction using CUDA

Thanakij Pechprasarn and Noppadon Khiripet
Knowledge Elicitation and Archiving Laboratory

National Electronics and Computer Technology Center
Pathumthani, THAILAND

thanakij.pechprasarn@nectec.or.th, noppadon.khiripet@nectec.or.th

Abstract—Machine learning community is often interested
in determining the best hypothesis given observed training
data. Bayes’ theorem provides a way to calculate the
probability of such the hypothesis. In addition, Monte Car lo
integration is often needed to help approximate the poster ior
distr ibutions required for the Bayesian analysis. However ,
Monte Car lo integration takes time to compute due to a huge
number of random samples required for acceptable accuracy,
especially in high dimensional problem space. We propose a
CUDA approach using graphic processing units to accelerate
the computation by orders of magnitude with special care
taken on the floating-point errors encountered in the parallel
reduction step.

Keywords—Bayesian probability, Monte Carlo integration,
parallel reduction, CUDA

III ... INTRODUCTION

In the area of machine learning, Bayesian method has
been used by experts in the field to construct intelligent
learning systems [1]. The posterior distributions are the
essential parts of determining the probability of the
hypothesis of the system. However, the posteriors may not
be easily calculated because often they are in a form of
integrals. It is extremely difficult, if not impossible, to
calculate the value of the posteriors due to lacking of a
closed form [2,3]. Typically, approximation methods are
used to find the values of the integrals [2]. Monte Carlo
integration is one of the approximation methods. It involves
in a random process which will generate random samples
according to the target population.

After sampling, the approximate value can be obtained
via the calculation of a sample mean multiplied by an
integration volume. It is trivial to implement a sequential
program to calculate such the sample mean. However, the
naïve implementation leads to two major drawbacks: 1) the
result may not be always correct 2) the performance of the
program is relatively slow. Firstly, a naïve implementation
may not always yield an acceptable result [4] because of a
subtle problem called absorption. The problem is a kind of
round-off errors in floating-point numbers. Secondly,

although the algorithm of the sequential code has a linear
scale, it is considered ineffective, especially when the
sample space is quite large [5].

To reduce errors from the absorption problem, the Kahan
summation algorithm can be used [5]. Next, there is a
known pattern to accelerate the computation of finding a
sample mean called parallel reduction [6]. Fortunately, in
addition to the performance improvement, the absorption
problem is also less likely to occur in parallel reduction
depending on the sample numbers. Although parallel
reduction can be combined with the Kahan summation, we
did not include the Kahan summation in our
implementation. The program with the Kahan summation
would have some performance decrease due to extra
instructions inserted. Instead, we present a sophisticated
technique that can be combined with parallel reduction to
prevent the absorption problem.

A data parallel style like parallel reduction indicates that
a general purpose graphical processing unit (GPGPU) can
be used to speed up the computation. In order to do GPGPU,
compute unified device architecture (CUDA) is used
because it is the major leading programming framework at
the present time [7]. In this paper, we propose a solution to
accelerate the computation of finding a sample mean with
parallel reduction using CUDA.

This paper is organized as follows. In Section II, we
review the required backgrounds. Our proposed method
including design and implementation is described in Section
III. We evaluate our solution through experiments in Section
IV. Finally, conclusion and future work are discussed in
Section V.

III III ... BACKGROUND

AAA... Bayesian Probability

Bayes rule is defined as:

 ���|�� � 	�
|��	���
	�
� (1)

-40-

MIWAI 2010

where,
D = Observed data
H = Hypothesis
P(D|H) = Likelihood of H
P(H) = Prior probability of H
P(H|D) = Posterior of H given D
P(D) = Probability of D

Since it is difficult to determine P(D), in practice, one

often shows the relationship of (1) as:

 ���|�� � ���|������ (2)

Because the posterior is also a probability distribution,
(2) can be divided by some normalizing factor to ensure that
the whole space of the posterior is 1. Hence, the equation
becomes:

 ���|�� � 	�
|��	���
� 	�
|
�	�
� �
 (3)

Alternatively, in (4) the posterior is marginalized and
called the marginal posterior.

 ���|�� � � ���|�, �� �� (4)

BBB... Monte Carlo Integration

Monte Carlo integration is a method to approximate the
value of an integral and is defined as:

 � � �� � V � � � � �
� ∑ ��������� (5)

where,
V = Integration volume
<f> = A sample mean

Monte Carlo integration utilizes a sampling method to

generate N samples corresponding to the target population f.
Markov Chain Monte Carlo (MCMC) is one of the sampling
techniques that can be used to obtain samples with
acceptable quality. A sample mean is an arithmetic mean of
the samples. The approximate value is then calculated by the
sample mean multiplied by the integration volume.

Monte Carlo integration can help approximate the value
of the posterior through the normalizing factor in (3) or the
marginalized posterior in (4).

CCC... Absorption Problem and The Kahan Summation

An absorption problem is a kind of round-off errors in
floating-point numbers. The error will occur when we try to
add two positive floating-point numbers that differ greatly.
For example, instead of getting 1.23456709876543 from
adding 1.234567 and 0.00000009876543, we get 1.234567.
When finding a sample mean, this error can accumulate and
lead to surprisingly incorrect final result in the end. The
Kahan summation is an algorithm to significantly reduce the
error. The idea is that the algorithm tries to keep another
accumulate variable to compensate the error.

DDD... Parallel Reduction

 FIG 1. TREE-BASED STRUCTURE OF PARALLEL REDUCTION

Parallel reduction is a pattern for reducing a set of
numbers using tree-based approach as shown in Fig 1. Let N
be the number of samples. With parallel reduction, a sample
mean is calculated as follows.

 � !" � #$%$&&'&_%'�)*+�,-�.$/#&'.�
� (6)

Assuming that N is a power of two, there are log2N tree
levels. Initially the first level starts with all N numbers.
There are N/2 add operations being performed at this level.
After that, we move to the next level. Now we have N/2
numbers with N/4 add operations. This process repeats itself
until there is only one number left. With parallel
programming, the actual computation of the add operations
at each level can be done in parallel.

EEE... GPGPU and CUDA

There is an idea to bring computing power of GPU,
which is used to solving computer graphic problems, into a
more general-purpose computing device [6]. This idea
coined the term GPGPU. CUDA is one of the major leading
software toolkits for programming GPGPU.

In CUDA, a problem will be divided into sub-problems
that can be solved independently. Each sub-problem is then
handled by a group of threads called a block. All threads in
the same block will share some information and
cooperatively work together. Because blocks can be
executed in parallel, any CUDA program would
automatically scale up by simply running more blocks.

A kernel is a function that utilizes the computing power
from GPU. A kernel resides in the GPU side (device)
waiting to be invoked by the CPU side (host). To define a
kernel, __global__ qualifier is applied at the definition of
the function. A kernel will be called by the host via a kernel
launch configuration <<<gridDim, blockDim>>>. gridDim
and blockDim are required parameters for specifying
numbers of blocks and threads consecutively. __device__
qualifier is used to define a function that resides in the
device and also be invoked within the device.

+ +

+

-41-

MIWAI 2010

III III III ... OUR METHOD

AAA... Primitive Concept

Basically, the absorption problem is caused by round-off
errors after adding a big and small floating-point number
together. An add operation will result in an incorrect
answer. This problem can be found very often in a
sequential program used for finding a sum of floating-point
numbers because there is only one accumulator throughout
the program. After adding for several times, the accumulator
would become a big number compared to the other numbers.
On the other hand, with parallel reduction, the problem is
less likely to occur because there are many accumulators. At
each tree level, the number of accumulators is equal to the
number of additions.

We assume that all the numbers are positive. In addition,
we also assume that adding the maximum and minimum
does not cause around-off error otherwise it may not be an
interesting case. Hence, the error can occur only when an
addend at some point in the parallel reduction step becomes
greater than the maximum enough so that it can cause the
error later when adding with a small number. Therefore,
under certain sets of numbers, the error can be found even
parallel reduction is used. For instance, we try to apply
parallel reduction on the following numbers: 0.005, 0.005,
0.00000001 and 0.00000001. After the first level of
reduction, the addends are 0.01 and 0.00000002. Next, this
time the error occurs after adding 0.01 and 0.00000002. The
result is 0.01 instead of 0.01000002.

Notice that from the example above if the maximum and
minimum are added together, there is no error produced.
That is, if we can ensure that at any stage any addend is
between the values of the maximum and minimum, the error
cannot occur. Next, we develop a technique that every time
after adding any two numbers, we will divide the
intermediate result by two. This technique will ensure that
the addend is always between the two operands. To be
precise, in our case, the addend is always in the middle of
the two operands. As a consequence, at any time any addend
computed will never become greater than the maximum.
Therefore, using our technique, the absorption problem will
be prevented.

When combining with tree-based structure of parallel
reduction, the technique gains some benefit if N is a power
of two. The sum from the reduction is not necessary to be
divided by N as it is already covered in the reduction step.
At each tree level, a division by two is applied to all add
operations in that level. The total value of divisions by two
in parallel reduction is equal to 2height which is equal to N.
Therefore, if N is a power of two, a sample mean can be
calculated as follows:

 � !" � 0!1!22 2_1 �34567"_8659_�6:2�<!�02 <� (7)

To handle the case that N is a non-power of two, a
simple zero-padding approach is used. The sample size is
extended to be the next higher power of two. Then we can
repeat the parallel reduction with the division step
mentioned above. However, because now the denominator

N does not corresponding to the number of the divisions
applied in the parallel reduction step. Therefore, a correcting
term must be calculated to compensate the effect of the
divisions. Eventually, we present a general form of our
solution as:

 � !" � = > 0!1!22 2_1 �34567"_8659_�6:2�<!�02 <� (8)

where,

C = ?1 �6� A 6< ! 078 1 7� 587�
B�CB'% -)/D'% +B$+ �. #,E'% ,F +E,

� � 2< �G

C is equal to 1 if N is a power of two otherwise C is
equal to the next higher power-of-two number from N. Note
that when finding the next higher number that is a power of
two, there can be many numbers, but the nearest number to
N is used.

Assuming that N is not a power of two, the maximum
value of C can be close to the limit of 2. However, the value
of C cannot be 2 otherwise N would be a power of two
which is a contradiction to the assumption. Therefore, the
range of C is [1,2).

BBB... Design and Implementation

There are two kernels in our CUDA program. Our first
kernel, solve, is for the parallel reduction step. Let N be the
number of samples and B be the block size. We have N/B
blocks with each block of size B. Each sub-problem is
handled by a block. Each block will be processed
independently running reduction on different chunks of data.
Hence, the kernel launch configuration for solve becomes
<<<N/B, B>>>. To simplify the implementation, B is
chosen to a power of two. Therefore, all sub-problems are
ensured to be full blocks each of size B. We will cover the
case that N is not divisible by B later. For now, we just
assume that N is divisible by B.

After solving all sub-problems, we now have N/B partial
results. Next, another kernel, compact, is used to gather all
N/B dispersed results and form new data of size N/B. The
new data will be divided into N/B2 sub-problems and re-
submitted to the solve kernel. This process repeats itself
until there is only one partial result left returned from solve.
Notice that assuming that N is divisible by B is already not
enough. In this case, N has to be a power of B. Again, the
general case that N is an arbitrary value will be covered
later.

Eventually, parallel_reduction_div2 is defined in Fig 2.

Algorithm parallel_reduction_div2(samples,N)

Input: samples—data from sampling
 N—the number of samples

Output: result—a result from parallel reduction
L = log(N)/log(B);
LAST = L-1;
n = N;
for i = 0 .. LAST
 solve<<<n/B, B>>>(samples,n);

-42-

MIWAI 2010

 if i == LAST then break;
 n = n/B;
 compact<<<n, 1>>>(samples,n,B);
 cudaThreadSynchronize();
end for
cudaMemcpy(& result,samples);

 return result
 FIG 2. PARALLEL REDUCTION WITH DIVISIONS BY TWO

Note that cudaThreadSynchronize() is needed to ensure
that the solve kernel will never be executed until the
compact kernel finishes its execution.

In the solve function, all B threads in each block will
calculate an addend divided by two in parallel. At each level
of the tree, half of the memory locations from the previous
level are going to be fetched again. Therefore, using shared
memory would result in a significant performance
improvement. The structure of the solve function is shown
in Fig 3.

Algorithm __global__ solve(samples,N)
 Input: samples—data from sampling
 N—the number of samples

__shared__ s_data[B];
load_into_shared_mem(s_data,samples);
reduce(s_data,B);

 save_to_global_mem(samples,s_data);
 FIG 3. THE SOLVE KERNEL

The shared memory is associated with s_data variable.
Firstly, in load_into_shared_mem, each worker thread
simultaneously copies an element of array from global
memory to shared memory. Next, the reduce function will
perform the parallel reduction step on s_data. After that,
save_to_global_mem is used to copy back an answer from
shared memory to global memory.

According to Harris [8], there are two major memory-
addressing schemes: interleaved addressing and sequential
addressing. Because the sequential addressing version
results in conflict-free style of memory access, we expect
that in general the sequential addressing implementation
would perform better. Next, we have reduce_i for
interleaved addressing version and reduce_s for sequential
addressing.

Fig 4 and 5 shows reduce_i and reduce_s respectively.

Algorithm __device__ reduce_i(s_data,N)
 Input: s_data—data in shared memory

 N—the size of shared memory
id = 2* threadIdx.x;
for(s = 1; s < N; s *= 2)
 __syncthreads();
 idx = s* id;
 if idx < N then
 s_data[id] = (s_data[id]+s_data[id+s])/2;

 end for
 FIG 4. REDUCTION FUNCTION WITH INTERLEAVED ADDRESSING

Algorithm __device__ reduce_s(s_data,N)
 Input: s_data—data in shared memory

 N—the size of shared memory
id = threadIdx.x;
for (s = N/2; s > 0; s /= 2)
 __syncthreads();
 If id < s then
 s_data[idx] = (s_data[idx]+s_data[idx+s])/2;

 end for
 FIG 5. REDUCTION FUNCTION WITH SEQUENTIAL ADDRESSING

In current implementation so far, even in the first level
of the tree half of the threads are wasteful. To utilize the
worker threads, a number of threads are halved. This way in
the first iteration, all threads will be performing addition.
Consequently, the kernel launch configuration for solve
becomes <<<N/B, B/2>>>. For clarity, the current
implementation of load_into_shared_mem is displayed in
Fig 6.

Algorithm __device__
load_into_shared_mem(s_data,samples)
 Input: samples—data from sampling
 Output: s_data—data in shared memory

id = 2* threadIdx.x;
gid = blockIdx.x*B+id;
s_data[id] = samples[gid];

 s_data[id+1] = samples[gid+1];
 FIG 6. LOAD INTO SHARED MEMORY WITH HALF THREADS

Next, we employ a technique from [8] called “First Add
During Load.” This technique will try to further half a
number of threads needed by performing an initial addition
during load into shared memory. Now, the kernel launch
configuration is <<<N/B, B/4>>> and Fig 7 displays the
new load_into_shared_mem function.

Algorithm __device__
load_into_shared_mem(s_data,samples)
 Input: samples—data from sampling
 Output: s_data—data in shared memory

id = 2* threadIdx.x;
gid = blockIdx.x*B + id;
s_data[id] = (samples[gid]+samples[gid+B/2])/2;

 s_data[id+1] =
(samples[gid+1]+samples[gid+1+B/2])/2;
 FIG 7. LOAD INTO SHARED MEMORY WITH FIRST ADD DURING LOAD

CCC... Non-Full Block Handling

In case of the value of N is not a power of B. This case
would lead to a remainder from N/B. Basic zero-padding
approach is used to extend a non-full block to virtually
become a full block. Instead of extending to a full block of
size B, we can save some memory space and computation
time by using a smaller block size. For example,
next_higher_power_of_two(remainder) can also be used as
our block size. However, we may not freely choose any a
power of two to be our block size for a non-full block. A
non-full block can be caused from either because it is the
last non-full block (with many other full blocks) or because

-43-

MIWAI 2010

this is the only single block left (no any other block). The
two situations have to be handled differently. In case of the
last non-full block, we have to use B as our block size
regardless of the value of the remainder. If we choose a
number that is less than B to be the block size, the number
of the divisions would also be less than the number of
divisions from the other full blocks. In case of only single
block left, next_higher_power_of_two(remainder) must be
used. B may not be used as the block size because using too
large block size than necessary implies that we have extra
divisions and again would lead to an incorrect result.

We can freely choose any a power of two to be the block
size for non-full block if we are not using divisions by two.
The summation alone would not affect the computation
result.

III VVV ... EXPERIMENT AND RESULTS

To set up the experiment, a machine with NVidia
GeForce GTX 280 graphic card is used. The CUDA Toolkit
version 2.3 is installed. Hence, the compute capability is 1.3.

Typically, the block size B is equal to blockDim, and the
maximum value of blockDim from the compute capability is
512. The minimum value of B is selected to be 32 because
32 is also the warp size. It would not be advantageous to
have the number of threads less than the warp size. In
addition, because B is also enforced to be a power of two,
we can have all possible values of B calculated. The value of
B can be 32, 64, 128, 256 and 512.

Next, because blockDim is referring to the number of
threads, it may or may not be equal to the block size
depending on the number of threads per block. However, in
the solve kernel, only B/4 threads are used per block. That
is, we can increase the block size up to 4 times so all eligible
block sizes become 128, 256, 512, 1024 and 2048.

With the compute capability of 1.3, gridDim is 65535.
Because we know that gridDim is calculated from N/B, we
can anticipate the maximum problem size as follows.

 TABLE 1
 MAXIMUM PROBLEM SIZE CORRESPONDING TO THE BLOCK SIZE

Block Size Maximum Problem Size
128
256
512
1024
2048

8388480
16776960
33553920
67107840
134215680

AAA... Correctness

We generate samples for the experiment using two
random number generators. The first generator is a uniform
random number generator which will generate the data set
within a range of 0 and 1. Next, a normal random number
generator is used as the second generator with the center of
the bell-shaped distribution at 6. For comparison, there are
three implementations included: the naïve implementation;
the Kahan summation; and our method, parallel reduction
with divisions by two. The programs are executed and the
results are displayed in Table 2.

 TABLE 2
 RESULTS WHEN RUNNING WITH DIFFERENT DATA SETS

Data Set Problem
Size

Result

Naïve
Kahan
Summation

Our
Method

U(0,1)

8388480 0.49998 0.499981 0.499981

16776960 0.499953 0.499981 0.499981

33553920 0.499944 0.499981 0.499981

67107840 0.250004 0.499981 0.499981

134215680 0.125002 0.499981 0.499981

N(6,1)

8388480 6.00014 5.99992 5.99992

16776960 6.60712 5.99992 5.99992

33553920 4.14664 5.99992 5.99992

67107840 2.25161 5.99992 5.99992

134215680 1.30409 5.99992 5.99992

The above table shows that our method computes more
reliable results than the naïve implementation. We show that
our method can compute a valid result as good as a result
from the Kahan summation.

BBB... Running Time

To show the performance improvement, we capture the
running time of our CUDA programs with both the
interleaved and sequential addressing schemes and compare
it with the running time of the program with the Kahan
summation. The Kahan summation is chosen to be a
representative of the sequential side because it computes a
valid answer.

The logarithmic chart, Fig 8, shows that our parallel
programs perform significantly better than the sequential
program. It also indicates that the sequential addressing
implementation is slightly faster than the interleaved
addressing implementation.

 FIG 8. EXECUTION TIME

CCC... Speed-Up

We calculate the speed-up of the parallel program with
different block sizes. To simplify the chart, we include only
the sequential addressing implementation since it performs
better than the interleaved addressing version.

0.100

1.000

10.000

100.000

1000.000

0 50000000 10000000 15000000

E
xe

cu
ti

on
 T

im
e

(m
s)

Problem Size

Sequential program

Parallel reduction + div2 (interleaved)

Parallel reduction + div2 (sequential)

-44-

MIWAI 2010

 FIG 9. SPEED-UP USING DIFFERENT BLOCK SIZES

According to Fig 9, for each block size, the speed-up is

increasing with a higher accelerate at first before the rate of
increase becomes much lower later. This diminishing return
indicates that there must be a bottleneck in CUDA core
resources. With larger problem sizes, many blocks may have
to be idle waiting to be executed due to limited resources of
available CUDA cores.

In addition, the chart also reveals that in general using a
larger block size is better because one can scale as well as
gain higher speed-up. However, when the largest block size,
2048, is used, the speed-up is actually dropped. This may be
caused from some congestion of threads due to limitation of
some shared resources of threads within the same block.

Note that each line in the above figure is for a certain
block size. So, referring to Table 1, the lines in the chart will
have difference in length. For example, the line with the
block size of 128 is short because it can only scale up to the
problem size of 8388480.

 TABLE 3

 SPEED-UP USING DIFFERENT PROBLEM SIZES AND BLOCK SIZES

Problem
Size

Block Size

128 256 512 1024 2048

65535 0.75 1.115385 1.084112 1.080745 1.067485

131070 1.465363 1.487179 2.115502 2.115502 2.102719

262140 2.823887 2.894191 4.201807 4.078947 4.020173

524280 5.229907 5.507874 5.518738 7.603261 7.521505

1048560 9.116694 9.833916 10.04464 13.75306 13.26651

2097120 13.89176 15.42896 16.06543 16.11127 19.60764

4194240 17.43948 23.3909 25.21628 25.35762 29.84037

8388480 23.4529 32.20398 35.45462 36.2488 34.45703

16776960 39.67046 44.54398 45.68901 43.00142

33553920 51.08197 52.70009 49.11728

67107840 57.19499 52.88059

134215680 54.9557

To obtain the optimal performance, one may have to
tune the block size for a particular problem size of interests.
Table 3 shows details of the speed-up obtained with a
variation of the problem size and the block size.

According to Table 3, the peak value of the speed-up
obtained is 57.19499 when using 1024 as the block size and
67107840 as the problem size.

VVV ... CONCLUSION AND FUTURE WORK

We propose a method to be combined with parallel
reduction to ensure the correctness of the result and also
improve the performance. We develop CUDA programs
with some optimization techniques to help accelerate the
computation. From the experiment, the maximum speed-up
obtained is 57.19499 times the sequential code.

In addition, some of our primitive ideas presented are
general so that they can be applied into much broader
contexts such as to scale the problem size by letting each
thread does more work or to reduce the numerical error in
floating-point summation by using the division technique.

Nevertheless, the work can be further improved in many
ways. For example, more optimization techniques such as
loop unrolling and special instructions like __mul24 can be
employed into the CUDA code.

One may try to modify the program to utilize the
multidimensional feature of CUDA. That is, the problem
may be formulated and divided into 2D or 3D blocks.

In the future, it would be interesting to see how the
programs scale and perform on newer hardware like Fermi
that has the compute capability of 2.0. Therefore, with a
more powerful graphic card like NVidia GeForce GTX 480
which is also empowered by the Fermi architecture, it would
greatly enhance the capability of the CUDA programs.

REFERENCES
[1] D. Heckerman, A tutorial on learning with Bayesian networks. in

Learning in Graphical Models (ed. M.I.Jordan) 301-354. 1998.

[2] L. Tierney, and J. Kadane, "Accurate Approximations for Posterior
Moments and Marginal Densities," Journal of the American Statistical
Association, 81, 82-86. 1986.

[3] M. Spiegel, Probability and Statistics. New York: McGraw-Hill,
1975.

[4] S. Chapra, and R. Canale, Numerical methods for engineers (2d ed.):
New York, McGraw-Hill, 812 p. 1988.

[5] E. De Doncker, Y. Shimizu, J. Fujimoto, F. Yuasa, K. Kaugars, L.
Cucos, J. Van Voorst, Loop integration results using numerical
extrapolation for a non-scalar integral, in Nuclear Instruments and
Methods in Physics Research, Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 534 (1-2), pp.
269-273. 2004.

[6] M. Harris, Mapping computational concepts to GPUs, in: M. Pharr
(ed.), GPUGems 2 : Programming Techniques for High-Performance
Graphics and General-Purpose Computation, chap. 31, Addison-
Wesley, pp. 493–508. 2005.

[7] NVIDIA CUDA: Compute Unified Device Architecture, NVIDIA
Corp., 2007.

[8] M. Harris, Optimizing Parallel Reduction in CUDA. NVIDIA
Developer Technology. 2008.

0

10

20

30

40

50

60

70

0 50000000 10000000 15000000

Sp
ee

d
U

p

Problem Size

128 256 512 1024 2048

-45-

MIWAI 2010

