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Abstract—Machine learning community is often interested 
in determining the best hypothesis given observed training 
data. Bayes’  theorem provides a way to calculate the 
probability of such the hypothesis. In addition, Monte Car lo 
integration is often needed to help approximate the poster ior  
distr ibutions required for  the Bayesian analysis. However , 
Monte Car lo integration takes time to compute due to a huge 
number of random samples required for  acceptable accuracy, 
especially in high dimensional problem space. We propose a 
CUDA approach using graphic processing units to accelerate 
the computation by orders of magnitude with special care 
taken on the floating-point errors encountered in the parallel 
reduction step. 

Keywords—Bayesian probability, Monte Carlo integration, 
parallel reduction, CUDA 

III ...   INTRODUCTION 

In the area of machine learning, Bayesian method has 
been used by experts in the field to construct intelligent 
learning systems [1]. The posterior distributions are the 
essential parts of determining the probability of the 
hypothesis of the system. However, the posteriors may not 
be easily calculated because often they are in a form of 
integrals. It is extremely difficult, if not impossible, to 
calculate the value of the posteriors due to lacking of a 
closed form [2,3]. Typically, approximation methods are 
used to find the values of the integrals [2]. Monte Carlo 
integration is one of the approximation methods. It involves 
in a random process which will generate random samples 
according to the target population. 

After sampling, the approximate value can be obtained 
via the calculation of a sample mean multiplied by an 
integration volume. It is trivial to implement a sequential 
program to calculate such the sample mean. However, the 
naïve implementation leads to two major drawbacks: 1) the 
result may not be always correct 2) the performance of the 
program is relatively slow. Firstly, a naïve implementation 
may not always yield an acceptable result [4] because of a 
subtle problem called absorption. The problem is a kind of 
round-off errors in floating-point numbers. Secondly, 

although the algorithm of the sequential code has a linear 
scale, it is considered ineffective, especially when the 
sample space is quite large [5]. 

To reduce errors from the absorption problem, the Kahan 
summation algorithm can be used [5]. Next, there is a 
known pattern to accelerate the computation of finding a 
sample mean called parallel reduction [6]. Fortunately, in 
addition to the performance improvement, the absorption 
problem is also less likely to occur in parallel reduction 
depending on the sample numbers. Although parallel 
reduction can be combined with the Kahan summation, we 
did not include the Kahan summation in our 
implementation. The program with the Kahan summation 
would have some performance decrease due to extra 
instructions inserted. Instead, we present a sophisticated 
technique that can be combined with parallel reduction to 
prevent the absorption problem. 

A data parallel style like parallel reduction indicates that 
a general purpose graphical processing unit (GPGPU) can 
be used to speed up the computation. In order to do GPGPU, 
compute unified device architecture (CUDA) is used 
because it is the major leading programming framework at 
the present time [7]. In this paper, we propose a solution to 
accelerate the computation of finding a sample mean with 
parallel reduction using CUDA. 

This paper is organized as follows. In Section II, we 
review the required backgrounds. Our proposed method 
including design and implementation is described in Section 
III. We evaluate our solution through experiments in Section 
IV. Finally, conclusion and future work are discussed in 
Section V. 

III III ...   BACKGROUND 

AAA...    Bayesian Probability 

Bayes rule is defined as: 

 ���|�� �  	�
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�  (1) 
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where, 
D = Observed data 
H = Hypothesis 
P(D|H) = Likelihood of H 
P(H) = Prior probability of H 
P(H|D) = Posterior of H given D 
P(D) = Probability of D 

 
Since it is difficult to determine P(D), in practice, one 

often shows the relationship of (1) as: 

 ���|�� �  ���|������ (2) 

Because the posterior is also a probability distribution, 
(2) can be divided by some normalizing factor to ensure that 
the whole space of the posterior is 1. Hence, the equation 
becomes: 

 ���|�� �  	�
|��	���
� 	�
|
�	�
� �
 (3) 

Alternatively, in (4) the posterior is marginalized and 
called the marginal posterior. 

 ���|�� �  � ���|�, �� �� (4) 

BBB...    Monte Carlo Integration 

Monte Carlo integration is a method to approximate the 
value of an integral and is defined as: 

 � � �� � V � � � � �
� ∑ ���������  (5) 

where, 
V = Integration volume 
<f> = A sample mean 

 
Monte Carlo integration utilizes a sampling method to 

generate N samples corresponding to the target population f. 
Markov Chain Monte Carlo (MCMC) is one of the sampling 
techniques that can be used to obtain samples with 
acceptable quality. A sample mean is an arithmetic mean of 
the samples. The approximate value is then calculated by the 
sample mean multiplied by the integration volume. 

Monte Carlo integration can help approximate the value 
of the posterior through the normalizing factor in (3) or the 
marginalized posterior in (4). 

CCC...    Absorption Problem and The Kahan Summation 

An absorption problem is a kind of round-off errors in 
floating-point numbers. The error will occur when we try to 
add two positive floating-point numbers that differ greatly. 
For example, instead of getting 1.23456709876543 from 
adding 1.234567 and 0.00000009876543, we get 1.234567. 
When finding a sample mean, this error can accumulate and 
lead to surprisingly incorrect final result in the end. The 
Kahan summation is an algorithm to significantly reduce the 
error. The idea is that the algorithm tries to keep another 
accumulate variable to compensate the error. 

DDD...    Parallel Reduction 

 
 

 

 

 

 

 

 

  
 FIG 1. TREE-BASED STRUCTURE OF PARALLEL REDUCTION 

 

Parallel reduction is a pattern for reducing a set of 
numbers using tree-based approach as shown in Fig 1. Let N 
be the number of samples. With parallel reduction, a sample 
mean is calculated as follows. 

 � !" � #$%$&&'&_%'�)*+�,-�.$/#&'.�
�  (6) 

Assuming that N is a power of two, there are log2N tree 
levels. Initially the first level starts with all N numbers. 
There are N/2 add operations being performed at this level. 
After that, we move to the next level. Now we have N/2 
numbers with N/4 add operations. This process repeats itself 
until there is only one number left. With parallel 
programming, the actual computation of the add operations 
at each level can be done in parallel. 

EEE...    GPGPU and CUDA 

There is an idea to bring computing power of GPU, 
which is used to solving computer graphic problems, into a 
more general-purpose computing device [6]. This idea 
coined the term GPGPU. CUDA is one of the major leading 
software toolkits for programming GPGPU. 

In CUDA, a problem will be divided into sub-problems 
that can be solved independently. Each sub-problem is then 
handled by a group of threads called a block. All threads in 
the same block will share some information and 
cooperatively work together. Because blocks can be 
executed in parallel, any CUDA program would 
automatically scale up by simply running more blocks. 

A kernel is a function that utilizes the computing power 
from GPU. A kernel resides in the GPU side (device) 
waiting to be invoked by the CPU side (host). To define a 
kernel, __global__ qualifier is applied at the definition of 
the function. A kernel will be called by the host via a kernel 
launch configuration <<<gridDim, blockDim>>>. gridDim 
and blockDim are required parameters for specifying 
numbers of blocks and threads consecutively. __device__ 
qualifier is used to define a function that resides in the 
device and also be invoked within the device. 

+ + 

+ 
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III III III ...   OUR METHOD 

AAA...    Primitive Concept 

Basically, the absorption problem is caused by round-off 
errors after adding a big and small floating-point number 
together. An add operation will result in an incorrect 
answer. This problem can be found very often in a 
sequential program used for finding a sum of floating-point 
numbers because there is only one accumulator throughout 
the program. After adding for several times, the accumulator 
would become a big number compared to the other numbers. 
On the other hand, with parallel reduction, the problem is 
less likely to occur because there are many accumulators. At 
each tree level, the number of accumulators is equal to the 
number of additions. 

We assume that all the numbers are positive. In addition, 
we also assume that adding the maximum and minimum 
does not cause around-off error otherwise it may not be an 
interesting case. Hence, the error can occur only when an 
addend at some point in the parallel reduction step becomes 
greater than the maximum enough so that it can cause the 
error later when adding with a small number. Therefore, 
under certain sets of numbers, the error can be found even 
parallel reduction is used. For instance, we try to apply 
parallel reduction on the following numbers: 0.005, 0.005, 
0.00000001 and 0.00000001. After the first level of 
reduction, the addends are 0.01 and 0.00000002. Next, this 
time the error occurs after adding 0.01 and 0.00000002. The 
result is 0.01 instead of 0.01000002. 

Notice that from the example above if the maximum and 
minimum are added together, there is no error produced. 
That is, if we can ensure that at any stage any addend is 
between the values of the maximum and minimum, the error 
cannot occur. Next, we develop a technique that every time 
after adding any two numbers, we will divide the 
intermediate result by two. This technique will ensure that 
the addend is always between the two operands. To be 
precise, in our case, the addend is always in the middle of 
the two operands. As a consequence, at any time any addend 
computed will never become greater than the maximum. 
Therefore, using our technique, the absorption problem will 
be prevented. 

When combining with tree-based structure of parallel 
reduction, the technique gains some benefit if N is a power 
of two. The sum from the reduction is not necessary to be 
divided by N as it is already covered in the reduction step. 
At each tree level, a division by two is applied to all add 
operations in that level. The total value of divisions by two 
in parallel reduction is equal to 2height which is equal to N. 
Therefore, if N is a power of two, a sample mean can be 
calculated as follows: 

 � !" � 0!1!22 2_1 �34567"_8659_�6:2�<!�02 <� (7) 

To handle the case that N is a non-power of two, a 
simple zero-padding approach is used. The sample size is 
extended to be the next higher power of two. Then we can 
repeat the parallel reduction with the division step 
mentioned above. However, because now the denominator 

N does not corresponding to the number of the divisions 
applied in the parallel reduction step. Therefore, a correcting 
term must be calculated to compensate the effect of the 
divisions. Eventually, we present a general form of our 
solution as: 

 � !" � = > 0!1!22 2_1 �34567"_8659_�6:2�<!�02 <� (8) 

where, 

C = ?1                            �6� A 6< ! 078 1 7� 587�
B�CB'% -)/D'% +B$+ �. #,E'% ,F +E,

�            � 2< �G 
 

C is equal to 1 if N is a power of two otherwise C is 
equal to the next higher power-of-two number from N. Note 
that when finding the next higher number that is a power of 
two, there can be many numbers, but the nearest number to 
N is used. 

Assuming that N is not a power of two, the maximum 
value of C can be close to the limit of 2. However, the value 
of C cannot be 2 otherwise N would be a power of two 
which is a contradiction to the assumption. Therefore, the 
range of C is [1,2). 

BBB...    Design and Implementation 

There are two kernels in our CUDA program. Our first 
kernel, solve, is for the parallel reduction step. Let N be the 
number of samples and B be the block size. We have N/B 
blocks with each block of size B. Each sub-problem is 
handled by a block. Each block will be processed 
independently running reduction on different chunks of data. 
Hence, the kernel launch configuration for solve becomes 
<<<N/B, B>>>. To simplify the implementation, B is 
chosen to a power of two. Therefore, all sub-problems are 
ensured to be full blocks each of size B. We will cover the 
case that N is not divisible by B later. For now, we just 
assume that N is divisible by B. 

After solving all sub-problems, we now have N/B partial 
results. Next, another kernel, compact, is used to gather all 
N/B dispersed results and form new data of size N/B. The 
new data will be divided into N/B2 sub-problems and re-
submitted to the solve kernel. This process repeats itself 
until there is only one partial result left returned from solve. 
Notice that assuming that N is divisible by B is already not 
enough. In this case, N has to be a power of B. Again, the 
general case that N is an arbitrary value will be covered 
later. 

Eventually, parallel_reduction_div2 is defined in Fig 2. 
 
Algorithm parallel_reduction_div2(samples,N) 

Input: samples—data from sampling 
              N—the number of samples 

Output: result—a result from parallel reduction 
L = log(N)/log(B); 
LAST = L-1; 
n = N; 
for i = 0 .. LAST 
    solve<<<n/B, B>>>(samples,n); 
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    if i == LAST then break; 
    n = n/B; 
    compact<<<n, 1>>>(samples,n,B); 
    cudaThreadSynchronize(); 
end for 
cudaMemcpy(& result,samples); 

    return result 
 FIG 2. PARALLEL REDUCTION WITH DIVISIONS BY TWO  

Note that cudaThreadSynchronize() is needed to ensure 
that the solve kernel will never be executed until the 
compact kernel finishes its execution. 

In the solve function, all B threads in each block will 
calculate an addend divided by two in parallel. At each level 
of the tree, half of the memory locations from the previous 
level are going to be fetched again. Therefore, using shared 
memory would result in a significant performance 
improvement. The structure of the solve function is shown 
in Fig 3. 
 
Algorithm __global__ solve(samples,N) 
    Input: samples—data from sampling 
              N—the number of samples 

__shared__ s_data[B]; 
load_into_shared_mem(s_data,samples); 
reduce(s_data,B); 

    save_to_global_mem(samples,s_data); 
 FIG 3. THE SOLVE KERNEL  

The shared memory is associated with s_data variable. 
Firstly, in load_into_shared_mem, each worker thread 
simultaneously copies an element of array from global 
memory to shared memory. Next, the reduce function will 
perform the parallel reduction step on s_data. After that, 
save_to_global_mem is used to copy back an answer from 
shared memory to global memory. 

According to Harris [8], there are two major memory-
addressing schemes: interleaved addressing and sequential 
addressing. Because the sequential addressing version 
results in conflict-free style of memory access, we expect 
that in general the sequential addressing implementation 
would perform better. Next, we have reduce_i for 
interleaved addressing version and reduce_s for sequential 
addressing. 

Fig 4 and 5 shows reduce_i and reduce_s respectively. 
 
Algorithm __device__ reduce_i(s_data,N) 
    Input: s_data—data in shared memory 

              N—the size of shared memory 
id = 2* threadIdx.x; 
for(s = 1; s < N; s *= 2) 
    __syncthreads(); 
    idx = s* id; 
    if idx < N then 
        s_data[ id] = (s_data[ id]+s_data[ id+s])/2; 

    end for 
 FIG 4. REDUCTION FUNCTION WITH INTERLEAVED ADDRESSING 

 

 
Algorithm __device__ reduce_s(s_data,N) 
    Input: s_data—data in shared memory 

              N—the size of shared memory 
id = threadIdx.x; 
for (s = N/2; s > 0; s /= 2) 
    __syncthreads(); 
    If id < s then 
        s_data[ idx] = (s_data[ idx]+s_data[ idx+s])/2; 

    end for 
 FIG 5. REDUCTION FUNCTION WITH SEQUENTIAL ADDRESSING  

In current implementation so far, even in the first level 
of the tree half of the threads are wasteful. To utilize the 
worker threads, a number of threads are halved. This way in 
the first iteration, all threads will be performing addition. 
Consequently, the kernel launch configuration for solve 
becomes <<<N/B, B/2>>>. For clarity, the current 
implementation of load_into_shared_mem is displayed in 
Fig 6. 
 
Algorithm __device__ 
load_into_shared_mem(s_data,samples) 
    Input: samples—data from sampling 
    Output: s_data—data in shared memory 

id = 2* threadIdx.x; 
gid = blockIdx.x*B+id; 
s_data[ id] = samples[gid]; 

    s_data[ id+1] = samples[gid+1]; 
 FIG 6. LOAD INTO SHARED MEMORY WITH HALF THREADS  

Next, we employ a technique from [8] called “First Add 
During Load.”  This technique will try to further half a 
number of threads needed by performing an initial addition 
during load into shared memory. Now, the kernel launch 
configuration is <<<N/B, B/4>>> and Fig 7 displays the 
new load_into_shared_mem function. 
 
Algorithm __device__ 
load_into_shared_mem(s_data,samples) 
    Input: samples—data from sampling 
    Output: s_data—data in shared memory 

id = 2* threadIdx.x; 
gid = blockIdx.x*B + id; 
s_data[ id] = (samples[gid]+samples[gid+B/2])/2; 

    s_data[ id+1] = 
(samples[gid+1]+samples[gid+1+B/2])/2; 
 FIG 7. LOAD INTO SHARED MEMORY WITH FIRST ADD DURING LOAD  

CCC...    Non-Full Block Handling 

In case of the value of N is not a power of B. This case 
would lead to a remainder from N/B. Basic zero-padding 
approach is used to extend a non-full block to virtually 
become a full block. Instead of extending to a full block of 
size B, we can save some memory space and computation 
time by using a smaller block size. For example, 
next_higher_power_of_two(remainder) can also be used as 
our block size. However, we may not freely choose any a 
power of two to be our block size for a non-full block. A 
non-full block can be caused from either because it is the 
last non-full block (with many other full blocks) or because 
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this is the only single block left (no any other block). The 
two situations have to be handled differently. In case of the 
last non-full block, we have to use B as our block size 
regardless of the value of the remainder. If we choose a 
number that is less than B to be the block size, the number 
of the divisions would also be less than the number of 
divisions from the other full blocks. In case of only single 
block left, next_higher_power_of_two(remainder) must be 
used. B may not be used as the block size because using too 
large block size than necessary implies that we have extra 
divisions and again would lead to an incorrect result. 

We can freely choose any a power of two to be the block 
size for non-full block if we are not using divisions by two. 
The summation alone would not affect the computation 
result. 

III VVV ...   EXPERIMENT AND RESULTS 

To set up the experiment, a machine with NVidia 
GeForce GTX 280 graphic card is used. The CUDA Toolkit 
version 2.3 is installed. Hence, the compute capability is 1.3. 

Typically, the block size B is equal to blockDim, and the 
maximum value of blockDim from the compute capability is 
512. The minimum value of B is selected to be 32 because 
32 is also the warp size. It would not be advantageous to 
have the number of threads less than the warp size. In 
addition, because B is also enforced to be a power of two, 
we can have all possible values of B calculated. The value of 
B can be 32, 64, 128, 256 and 512. 

Next, because blockDim is referring to the number of 
threads, it may or may not be equal to the block size 
depending on the number of threads per block. However, in 
the solve kernel, only B/4 threads are used per block. That 
is, we can increase the block size up to 4 times so all eligible 
block sizes become 128, 256, 512, 1024 and 2048. 

With the compute capability of 1.3, gridDim is 65535. 
Because we know that gridDim is calculated from N/B, we 
can anticipate the maximum problem size as follows. 

 TABLE 1 
 MAXIMUM PROBLEM SIZE CORRESPONDING TO THE BLOCK SIZE 

Block Size Maximum Problem Size 
128 
256 
512 
1024 
2048 

8388480 
16776960 
33553920 
67107840 
134215680 

 

AAA...    Correctness 

We generate samples for the experiment using two 
random number generators. The first generator is a uniform 
random number generator which will generate the data set 
within a range of 0 and 1. Next, a normal random number 
generator is used as the second generator with the center of 
the bell-shaped distribution at 6. For comparison, there are 
three implementations included: the naïve implementation; 
the Kahan summation; and our method, parallel reduction 
with divisions by two. The programs are executed and the 
results are displayed in Table 2. 

 TABLE 2 
 RESULTS WHEN RUNNING WITH DIFFERENT DATA SETS 

Data Set Problem 
Size 

Result 

Naïve 
Kahan 
Summation 

Our 
Method  

U(0,1) 

8388480 0.49998 0.499981 0.499981 

16776960 0.499953 0.499981 0.499981 

33553920 0.499944 0.499981 0.499981 

67107840 0.250004 0.499981 0.499981 

134215680 0.125002 0.499981 0.499981 

N(6,1) 

8388480 6.00014 5.99992 5.99992 

16776960 6.60712 5.99992 5.99992 

33553920 4.14664 5.99992 5.99992 

67107840 2.25161 5.99992 5.99992 

134215680 1.30409 5.99992 5.99992 

 

The above table shows that our method computes more 
reliable results than the naïve implementation. We show that 
our method can compute a valid result as good as a result 
from the Kahan summation. 

BBB...    Running Time 

To show the performance improvement, we capture the 
running time of our CUDA programs with both the 
interleaved and sequential addressing schemes and compare 
it with the running time of the program with the Kahan 
summation. The Kahan summation is chosen to be a 
representative of the sequential side because it computes a 
valid answer. 

The logarithmic chart, Fig 8, shows that our parallel 
programs perform significantly better than the sequential 
program. It also indicates that the sequential addressing 
implementation is slightly faster than the interleaved 
addressing implementation. 

 
 FIG 8. EXECUTION TIME 

CCC...    Speed-Up 

We calculate the speed-up of the parallel program with 
different block sizes. To simplify the chart, we include only 
the sequential addressing implementation since it performs 
better than the interleaved addressing version. 
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 FIG 9. SPEED-UP USING DIFFERENT BLOCK SIZES 

 
According to Fig 9, for each block size, the speed-up is 

increasing with a higher accelerate at first before the rate of 
increase becomes much lower later. This diminishing return 
indicates that there must be a bottleneck in CUDA core 
resources. With larger problem sizes, many blocks may have 
to be idle waiting to be executed due to limited resources of 
available CUDA cores. 

In addition, the chart also reveals that in general using a 
larger block size is better because one can scale as well as 
gain higher speed-up. However, when the largest block size, 
2048, is used, the speed-up is actually dropped. This may be 
caused from some congestion of threads due to limitation of 
some shared resources of threads within the same block. 

Note that each line in the above figure is for a certain 
block size. So, referring to Table 1, the lines in the chart will 
have difference in length. For example, the line with the 
block size of 128 is short because it can only scale up to the 
problem size of 8388480. 

 
 TABLE 3 

 SPEED-UP USING DIFFERENT PROBLEM SIZES AND BLOCK SIZES 

Problem 
Size 

Block Size 

128 256 512 1024 2048 

65535 0.75 1.115385 1.084112 1.080745 1.067485 

131070 1.465363 1.487179 2.115502 2.115502 2.102719 

262140 2.823887 2.894191 4.201807 4.078947 4.020173 

524280 5.229907 5.507874 5.518738 7.603261 7.521505 

1048560 9.116694 9.833916 10.04464 13.75306 13.26651 

2097120 13.89176 15.42896 16.06543 16.11127 19.60764 

4194240 17.43948 23.3909 25.21628 25.35762 29.84037 

8388480 23.4529 32.20398 35.45462 36.2488 34.45703 

16776960  39.67046 44.54398 45.68901 43.00142 

33553920   51.08197 52.70009 49.11728 

67107840    57.19499 52.88059 

134215680     54.9557 

 

 

To obtain the optimal performance, one may have to 
tune the block size for a particular problem size of interests. 
Table 3 shows details of the speed-up obtained with a 
variation of the problem size and the block size. 

According to Table 3, the peak value of the speed-up 
obtained is 57.19499 when using 1024 as the block size and 
67107840 as the problem size. 

VVV ...   CONCLUSION AND FUTURE WORK 

We propose a method to be combined with parallel 
reduction to ensure the correctness of the result and also 
improve the performance. We develop CUDA programs 
with some optimization techniques to help accelerate the 
computation. From the experiment, the maximum speed-up 
obtained is 57.19499 times the sequential code. 

In addition, some of our primitive ideas presented are 
general so that they can be applied into much broader 
contexts such as to scale the problem size by letting each 
thread does more work or to reduce the numerical error in 
floating-point summation by using the division technique. 

Nevertheless, the work can be further improved in many 
ways. For example, more optimization techniques such as 
loop unrolling and special instructions like __mul24 can be 
employed into the CUDA code. 

One may try to modify the program to utilize the 
multidimensional feature of CUDA. That is, the problem 
may be formulated and divided into 2D or 3D blocks. 

In the future, it would be interesting to see how the 
programs scale and perform on newer hardware like Fermi 
that has the compute capability of 2.0. Therefore, with a 
more powerful graphic card like NVidia GeForce GTX 480 
which is also empowered by the Fermi architecture, it would 
greatly enhance the capability of the CUDA programs. 
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